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Boundedness and Stability of Impulsively Perturbed 
Systems in a Banach Space 

L. Berezansky ~ and E. Braverman 2 

Received December 6, 1993 

We consider the influence of impulsive perturbations of a linear impulsive 
equation in a Banach space on the existence of bounded solutions and the 
exponential stability of the equation. 

1. INTRODUCTION 

The theory of impulsive differential equations goes back to the work of 
Millman and Myshkis (1960). These equations describe processes changing 
their state abruptly at certain moments. This means that the duration of the 
perturbation is negligible compared with the time of the process. Perturba- 
tions of  this kind occur in control problems (Bressan and Rampazzo, 
1991). Recently the development of the theory of impulsive differential 
equations in abstract spaces has begun (Bainov et al., 1988a,b, 1989, 1993; 
Zabreiko et  al., 1988). 

We consider the problem 

2 + A ( t ) x ( t )  =f ( t ) ,  t~[0, ~ )  (1) 

X(Z i -~- O) = Bix('~ i -- 0) (2) 

where x ( t )  is an element of  a Banach space Y, and Bi: Y ~ Y are linear 
bounded operators. Our objective is to derive conditions such that the 
solution x is bounded on the half-line [0, oo) for any bounded right-hand 
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side f:  

sup llf(t)I[ < ~ (3) 
t > _ 0  

where ]l" II is the norm in Y. In the control theory this problem is treated 
as follows. Is the output x bounded for any bounded input f ?  

Naturally the above problem is connected with the exponential stabil- 
ity of a differential equation. Anokhin et al. (1993) deal with results of this 
kind for impulsive delay differential equations. The results for differential 
equations without impulses in a Banach space can be found in Dalecki[ and 
Kre[n (1974). For impulsive differential equations in a Banach space a 
connection of boundedness and stability is obtained in Zabreiko et al. 
(1988). 

Our approach is different. We consider the homogeneous equation 

2(0 + A(t)x(t) = 0, t e[0, oo) (4) 

with nonhomogeneous impulsive conditions 

where 

X(~i'-~-O) ~'Bix(~i--O) q-~i, i =  1 , 2 , . . .  (5) 

sup [[0~tl [ < oo (6) 
i 

Suppose any solution of (4), (5) with (6) is bounded on the half-line. 
We prove that under natural constraints each solution of (t), (2), with the 
right-hand side satisfying (3), is also bounded on the half-line. 

It is to be emphasized that unlike Zabreiko et al. (1988), we do not 
need to check whether the solution is bounded for any bounded right-hand 
side. Moreover, in the scalar case Y = R we can choose certain ~; (pre- 
cisely, ~ = sign{YIj=l Bj}, where sign u =u/]u[). Then by checking the 
boundedness of x in the only case we obtain that the solution of (1), (5) is 
bounded for any f ,  o~ satisfying (3), (6). The result can be applied to 
differential equations without impulses and it is new for them. 

The paper is organized as follows. First we obtain that if a solution of 
each problem (4), (5) with (6) is bounded on the half-line, then the 
evolution operator has an exponential estimate. Section 3 deals with the 
main result described above. In Section 4 the connection between impulsive 
equations and equations without impulses is considered. 

2. EXPONENTIAL ESTIMATES 

Let 0 = % < z l < " "  be fixed points, l i m i _ ~ % - = ~ ,  and Y be a 
Banach space with a norm H I[; by [1" [[ we also denote the norm of a 
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linear operator acting in Y; L(Y) is a space of linear bounded operators 
acting in Y. 

Let I~(Y) be a space of sequences ~ = {c~}p= I, c ~  Y, i = 1, 2 , . . . ,  
such that 

sup II < 
i _ > l  

with the norm 

i_>! 

Definition. A function x : R ~ Y  absolutely continuous in each 
[zi, zi+ ~) is a solution of the impulsive equation (1), (5) if for t r z~ it 
satisfies (1) and for t = zi it satisfies (5). 

The solution is assumed to be right continuous. 
Further we need the following hypotheses. 

(H1) Bg: Y ~  Y, i = 1, 2 , . . . ,  are linear bounded operators, A(t) is a 
continuous operator function with values in L(Y), and f ( t )  is a continuous 
function with values in Y. 

(H2) Bi: Y ~ Y have bounded inverse operators. 
(H3) There exists a > 0 such that z~+ 1 - -  Zi < G, i = 1, 2 . . . . .  
(H4) There exists p > 0 such that z~+ 1 - zi > p, i = l, 2 . . . . .  

Suppose (H1) and (H2) hold. Then the impulsive equation (1), (5), 
x(0) = e has one and only one solution that can be presented as (Bainov et 
al., 1988a) 

x(t) = X(t)a + t t C(t, s)f(s) ds + ~ C(t, zi)a i (7) 
3o O'< Ti~ t 

where the evolution operator is 

c( t ,  s) = x ( t ) x - ' ( s )  (8) 

Here X(t) is the solution of  the operator equation 

X(t) + A(t)X(t)  = 0 

X(z~ ) = BgX(z~ - 0), i = 1, 2 , . . . .  

X(O) = I 

where I: Y ~ Y is the identity operator. 
Obviously C(t, s) satisfies the semigroup equality 

C(t, s) = C(t, z)C(z, s) (9) 

Theorem 2.1. Suppose ( H 1 ) - ( H 3 )  hold and the solution of the prob- 
lem (4), (5), x ( 0 ) =  0 is bounded for any ~ = {a~}~= i e l~(Y).  
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Then there exist positive constants N and v such that the inequality 

IIX(t) [[ < N exp( -v t )  (10) 

holds. 

Proof. By (7) the solution of the initial problem (4), (5), x(0) = 0 has 
the representation 

x(O = E c(t ,  ~,)~; (11) 
O<zi<--t 

Thus for any t the right-hand side of (11) is a bounded linear operator 
acting from I~(Y) to Y since 

I/x(t)[[ < E []c(t,~/)ll.[[~[[l~(~) 
O-<Ti< t 

where ~ = ( ~ ,  ~: . . . . .  ~i . . . .  )~I~(Y). By the hypothesis of the theorem 
for any sequence ~a i~(Y)  the solution x(t) is bounded. Therefore the 
uniform boundedness principle implies that there exists k > 0 such that 

IIx(01[-< kll~ll,~<~> for any ~e l~(Y)  

Substituting of (8) in ( l l )  gives 

o<~,~,E x ( t ) x - % ) ~ ,  <_ kll~ll,~<~, (12) 

Setting ~,--X-(rl)y, Ilyll = 1 for ~, -< t <v2, we obtain 

Ilx(t)ll < kllX(~l)]l 

and k > 1. 
By setting 

X(z, )y X(z2)y 
~ ' -  [ /x(~, ) l l '  ~= = IIx(~=)[t' Ilyll = 1 

we obtain from (12) for t = zz 

IIX(~z)y llE( llx(~, ) ll) - ' + (lIx(~=)ll)- '] - k 

As y is an arbitrary vector in R" such that Ily [I = 1, then 

[]x(~2) II[(llx(~,) II) -1 + (llx(~=) II)-11 _ k 

therefore 

IIx(~2) II ~ k 
1 +  IIx(~l)ll 
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Hence 

tlX(T2) [I -< (k - l) l lX(Tl)l l 
Without  loss of  generality we can assume k > 1. 

By setting 

X'(T 1 )Y X(T. 2 )Y X ( z  3)Y 

~ " - l l x e , ) l l '  ~'== l l x ( o l l '  ~ ' ~ - l l x ( ~ 3 ) l l '  
we obtain from (12) for  t = T 3 

IIx(~Jyllt(llx(~,)tl)-' + ( l l x ( o  H)-'  + ( n x ( ~ J  II)- '] -< k 

As y ~ R "  is arbi t rary such that  Ilyl[ = 1, then (13) gives 

Ilx(~)ll llx(~3)il-<k 
l + l lX(~,)l l(k - 1) + l l x e , ) l l  

Thus 

IIxe3)[l ~ tlX(~l)H( k - 1)2/k 

N o w  we prove by induction that  

llx(s+,)ll -< llx(~,)ll(k- l)y/k]-' 
for any positive integer j. 

Suppose that  

l lx(~,+,)Ll-< l l x ( ~ , ) l [ ( k -  l) ' /k' I, i l~_j 

Then by setting in (12) 

X(T 1 )y X('Cj + ,  )y 

~'  = l lx(-c l ) l l"  " ~ J + ' - l l x ( ~ + , ) l l '  

Ily It = 1, w e  obtain for t:rj+2 
[ l k k j-l_ _] I lx(~j+ 2) II ~ + ~ . - .  ~ -< k 

I + llx(~,)ll ~ ~ - 5  ~ (k - I )  = ( k -  1)Jl 

As a sum of  geometric progression 

Y-  ' k '  kJ/(k - 1) j+ ' - 1/(k - 1) U 

(k l) i+1 k / ( k  1 ) -  1 (k l) j 1 i = 0  - -  - -  - -  

then 

IIx(~j+ 2)II 1 + 1 < k - 1 
liX(Zl) II (k -- l) y - 

Hence  lix(~j+2)[I <- IIX(*,)II(k - 1)J+.'/k j, 

llx rr = 1 

x% + Oy 

~,j+2- [Ix(~j§ 2)11 

(13) 



2080 Berezansky and Braverman 

Let in (12) 

r 1 = 0r 2 . . . .  - ~ -  ~j = 0, ~j +1 = x(mj  + l ) y ,  [[Y II = 1 

Then 

[Ix(t) I[- kllx(~j§ -< [Ix(~,)H(k- 1)J/k j -2  

for Zj+l-< t <z j+2.  Since by the hypothesis of the theorem t < ( j + 2 ) a ,  
i.e., j > t /a  - 2, then 

ln(]IX(t) 1[) < ln([IX(z1) I]) - ( t /a  - 2) ln[k/ (k  - 1)] + 2 In k 

By assuming 

v = ln[k / (k  - 1)]/a 

N 1 = ]IX(z1)[Ika/(k - 1) 2 

N = m a x { N l ,  sup [exp(vt)l[X(t)[l] } 
�9 0 ~  / < ~ ' 1  

we obtain the inequality (10). The proof  of  the theorem is complete. 

Definition. Equation (1), (2) is said to be exponentially stable if there 
exist positive constants N and v such that for any solution of  the equation 
(4), (2) the inequality 

[Ix(t) [I - N e x p ( - v t )  [Ix(0)[] 

holds. 

Corollary. Suppose the hypotheses of Theorem 2.1 h01d. Then equa- 
tion (1), (2) is exponentially stable. 

Consider an additional hypothesis. 
(H5) There exist positive constants b and M such that 

~ 17i + 1 

sup IlBe[I _<b, llA(s)lld  < M ,  i =  1,2 . . . .  (14) 
i i 

Theorem 2.2. Suppose the hypotheses ( H 1 ) - ( H 3 )  and (H5) hold and 
solution of  the problem (4), (5), x ( 0 ) = 0  is bounded for any the 

0~ = { ( ~ i } ~ ) ~  1 ~loo(r). 
Then there exist positive constants N and v such that 

11 C(t,  s) [1 <- N exp[ - v(t - s)] 

0 < s < t < o o .  

(15) 

Proof. We fix a positive integer p. Then for any u e Y, C(t,  Zp)U is the 
solution of the problem (4), (5), x(0) = 0, ei = 0, i Cp,  ~p = u. 
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By repeating the proof of Theorem 2.1 we obtain 

IIc(t, ~)l[ -< No exp[-v( t  - Zp)] 

with 

f ) 
N~ = max{llC(zp + , , "~p)llk4/(k - - 1 )  2, sup [exp(v( t -  zp))IlC(t, Zp) II] } 

[ "Cp<t<Zp+ 1 ) 

Now we have to show that N o can be chosen independently of p. 
The operator C(t,  Zp) is the solution of the operator equation 

C(t,  rp) + A( t )C( t ,  Zp) =O,  tr  rp+ l) 

where C(zp, ~p) = L I: Y ~ Y is the identity operator, 

c ( ~  + 1, ~ )  = Be+,  C(T~+ 1 - o, ~) 
Thus for te[Tp, Zp+l)  the operator C(t,  Zp) is the 

integral equation 

C(t,  Zp) = I - A(~)C(~,  Zp) d~ 
p 

By the Gronwall-Bellman inequality we obtain 

[[C(t, Zp)[I ~ exp IIA(OII d( 
kd'~p 

solution of the 

where 

Hence 

For t = ' C p +  1 

IIC(~p+,, ~)11 ~ LIBp+lll.llC(~p+,-o,~)ll < - : b e  M (17)  

I1 c(t, ~) II ~ N= exp[ - v ( t  - -  Zp)] 

N2 = m a x { b e M k 4 / ( k  _ 1)2, be w + M, e w + M} 

Now let se[0,  m) be arbitrary. Suppose zp is the least of all Zp >->- s. 
Then 

II c(t, ~)11 = [I c(t, ~,,)c(~,,, ~)I1 

-< Ilc(t, ~)11 �9 IIc(~,  s)ll 

< N 2 exp[--v(t -- Zp)] �9 N2 exp[ -v(zp - s)] 

= N 2 exp[ - v(t - s)] 

Therefore (14) gives 

Ilc(t, v,,)]l-<e M, t ~('c,,, v , ,§  (16)  
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The latter inequality may be proven similar to the proof  of  inequalities 
(16), (17). 

Therefore II C(t,  s)II <- N exp[ - v(t - s)], with N = N2 z. 
The proof  of the theorem is complete. 

3. MAIN RESULTS 

The main results of this work are the following. 

Theorem 3.1. Suppose the hypotheses ( H 1 ) - ( H 5 )  hold and the 
solution of  (4), (5), x ( 0 ) = 0  is bounded on the half-line for any 

= {ai}~=, ~ i ~ ( Y ) .  
Then each solution x(t)  of the problem (1), (5) and f, a satisfying (3), 

(6) is bounded for t > 0. 

Proof.  By Theorems 2. I and 2.2 there exist positive constants N and v 
such that 

II c( t ,  s)I1 ~ N exp[ - v ( t  - s)] 

]Ix(t) I[ ~ N e x p ( - v t )  

The solution x has the representation (7). Thus 

IIx(OII ~ I Ix(t) l l .  IIx(O)ll + E [Ic(t,~,)ll. I1~11 
O<zi~t  

+ I lc(t ,s) l l l l f (~)l l  as 

_< N exp(-vt)IIx(O)I[ 

+ ~ N exp [ -v ( t  - zi)] Ilei II + N e x p [ - v ( t  - s)] II/(~)If d~ 
i = l  �9 

Consider the second term. Let zk be the greatest of  all z~ < t. Then 

t - - z k _ l > - - Z k - - Z k _ l > p ,  t - - z k  2 > 2 p , . . . ,  t - - z l > ( k - - 1 ) p  

Therefore 

e x p [ - v ( t -  zj)] - - -~  e x p ( - v j p )  = 
j = l  j = 0  1 -- exp( -- vp) 



Stability of Impulsively Perturbed Systems 2083 

Hence 
N N,,ll~ [l,~(~)_z_ + _  sup [If(s)I[ lix(t)ll -< Nilx(0)ll §  e x p ( - v p )  v ~>-0 

Thus x(t) is bounded for t >- 0, which completes the proof  of  the theorem. 

Theorem 3.2. Suppose the hypotheses of Theorem 3.] hold. 
(a) Then 

lim fla.[I=0, lim [If(t)H = 0  

imply that for any solution x of (1), (5) 

lim ilx(t)1[ = 0 
t~*0O 

(b) Suppose that there exist positive constants N~ and 2 such that 

]] 7,, tl -< NI exp( - ,~n), Hf(t) l] <- N, exp( - 2 0  

Then for any solution x of  (1), (5) there exist positive constants No 
and Vo such that 

I]x(t) [l <- No exp( -Vot  ) 

Proof. (a) By Theorems 2.1 and 2.2, as in the proof  of  Theorem 3.1, 
one obtains 

I[x(t)[t -< N exp(--vt)ltx(O)tl + ~ N exp[-v(t  --zi)][[a/H 
O<~i~<t 

+ N exp[ -- v(t - s)] lifts)II ds 

We fix ~ > 0. Let t t > 0  be such that 

t~ > - -v  In 3 N  0) 

Then the first term in the sum 

N e x p ( - v t )  [Ix(0)I[ < e/3 

Let ~ be such that for z~ >- 7 

tl~, II < 6N[ 1 - exp( - vp)l 

and t2 > T be such that for t > t 2 

2 N e x p [ - v ( t -  ~,)]ll~ll < 
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Then similar to the proof  of  Theorem 3.1, we evaluate the second term 
for t > t2: 

Z N expE-v( t  - "q)] [[~i [J 
0 < "ci ~ t 

= Y N e x p [ - v ( t - ~ , ) ] l l ~ , [ I  
0 < ~ t _ <  7" 

+ E N exp[--v(t  - -  zi)][la, ll 
F < ' r i  -< t 

8 oo /3 

< - + ; ~ = o  N e X p (  - 6N[1 -- exp( - v p ) ]  

/3 /3 <g+g=3  

The corresponding estimation of  the third term 

f0 ' N expl - v ( t  - s)J l i f t s ) I I  ds for lira flY(s)[] = 0 
s ~ o o  

is given in Massera and Sch/iffer (1966). Thus for a certain t3 

N exp[ - v(t - s)] [[f(s)II d~ < ~ 

for each t > t3. 
Therefore for t > max{h,  h ,  t3} 

IIx(/)ll < -~+5+-~= ~ 

Since e > 0 is arbitrary, we obtain limt~ oo Ilx(t)]l = 0. 
(b) For  obtaining an exponential estimate of x ( t ) ,  we have to evaluate 

each of  the three above terms. 
The first term 

N exp(-vt) IIx(O)II 
obviously has the exponential estimate; the third one under the hypotheses 
of  the corollary also can be estimated as (Massera and Sch/iffer, 1966) 

fo t N exp[ - v ( t  - -  s)] lifts)II ds <- N3 e x p ( -  t) V3 

with certain positive constants N3 and v3. 
Now we prove that there exist positive constants N2 and v2 such that 

.~ N expE--v(t - -  z,)] lion, II < N2 exp(--v2t) 
O<zi~ t  
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Let z k - t < zk +1. Then, denoting 

fl = y,  N e x p [ - v ( t - z , ) ] l l ~ ]  t 
O<zi<t 

we obtain 
k 

fl < ~ N e x p [ - v ( t  - zi)]Nl exp( - -20  
i = 1  

Since t - zi > (k - i)p (see the proof  of  Theorem 3.1), then 
k 

fl < NN1 ~ exp[ - v(k - i)p] exp( - 20  
i = 1  

k 

= NN1 e x p ( - v p k )  ~ exp[(vp - 2)i] 
i = l  

< NN1 e x p ( - v p k )  exp[(vp - 2 ) ( k  + 1)] 
exp(lvp -- 21) - 1 

NN1 exp(vp) 
- exp(lvp - 2[) - 1 exp[ - 2 ( k  + 1)] 

The hypothesis (H3) gives that  t < Zk+ t < (k + 1)a. Therefore 

fl < e x p ~ - Z ~ ) ] ) - -  NNI exp(vp) 1 exp(  - 2  t) =N2 exp(--v2t ) 

with v2 = - 2/a,  

NN1 exp(vp) 
N2 = exp(iv p _ 21 ) _ 1 

Denoting 

we obtain 

No = max{N, N2, N3} 

Vo = min{v, v2, v3 } 

2085 

I]x(t) [{ <- No exp( - v o t) 

which completes the proof. 

Corollary 3.3. Suppose Y = R (scalar case), ( H 1 ) - ( H 5 )  hold, and the 
solution of  (4), 

x(z i )  = Bix(z i  - O) + sign[BiX(zi  - 0)], i = 1, 2 , . . .  (18) 

x(0) = 0 is bounded on the half-line. Here X is the function from the 
representation (7), sign u = u/[u I. 
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Then each solution of (1), (5) is bounded on [0, oe) for any f,  
satisfying (3) and (6), respectively. 

Proof By the hypothesis of the corollary there exists Q > 0 such that 
]x(t)l -< Q, t > 0, where x is the solution of (4), (18), x(0) = 0. 

As a,. = X(z~)/IX(v~) I, then (7)implies 

]x(t)l = [0<~-,~< C(t, zi)X(z,)/IX(z,) 1 < Q 

However, 

c(t, 

has the same sign for any i = I, 2 , . . . ,  zi < t, for a fixed t. Therefore 

o<E c(t, = E Ic(t, -< Q 
O<7:i<~t 

Hence for any ~ = {ai}F= 1 ~I~(Y) the solution x of  (4), (5) is bounded: 

<zi<--t O<zi<--t 

Thus the hypotheses of Theorem 3.1 are satisfied. Therefore each solution 
of (1), (5) is bounded on the half-line whenever f ,  c~ satisfy (3), (6), 
respectively. 

One can apply Theorems 2.1 and 2.2 to ordinary differential equations 
without impulses. 

Corollary 3.4. Suppose there exists a positive constant ~/such that for 
any sequence c~ = {~}F= ~ ~I~(Y) the equation 

:i(t) + A(t)x(t) = ~. c~3(t -- tli) 
i = 1  

has a bounded solution. 
Then there exist positive constants N and v such that for the solution 

of (4) the estimates (10) and (15) are valid. 
Here 6(t - q i )  is a delta function; the derivative in the left-hand side 

and the equality are understood in the distributional sense. 

Remark. Let q(a, b) be the number of points ~ lying in the interval 
[a, b). Note that the usual condition (Bainov et al., 1989) 
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lim ~/(t, t + 09) - q < o o  
s  (~0 

is more restrictive than both hypotheses (H3) and (H4). 

4. EXPONENTIAL ESTIMATES OF IMPULSIVE AND 
CONTINUOUS SOLUTIONS 

Since many results on exponential estimation of the differential equa- 
tion (1) are known, the following question is of special interest. Let any 
solution of the problem (1), x ( 0 ) =  0, be bounded on [0, ~ )  for any 
bounded on [0, Go) right-hand side f Does this property hold for the 
impulsive problem (1), (2)? Boundedness of solutions is connected with 
exponential estimates of an evolution operator. The following examples 
illustrate that an exponential estimate for the impulsive equation does not 
imply an exponential estimate for the corresponding differential equation 
(1) and vice versa. 

E x a m p l e  I. The solution of the problem 

2 = O, x( i )  --- 0.5x(i - 0), i = 1, 2 . . . . .  x(0) -- 1 

can be estimated 

while the solution of 

is constant. 

x(0 ~ 2 e x p ( - t  In 2) 

= o ,  x ( O )  = 1 

E x a m p l e  2. The equation 2 + x - f  is exponentially stable. However, 
for the impulsive equation 

2 + x = O, x( i )  = ex( i  - 0), i = 1, 2 . . . .  

we obtain x(i)  = x(O). 
It is well known that the operator X( t )  in the representation (7) for the 

solution of the impulsive equation (1), (5) can be defined if we know the 
corresponding operator U(t) of the nonimpulsive equation (1) (Bainov et 
al., 1989) 

i 

X( t )  = U ( t ) U - ' ( z i )  1~ Oi_j+lX('~i_j+l)X-l(,'ci~j) (19) 
j = l  

for t~[zi, Ti+ ~). If we know the evolution operator G(t, s) = U ( t ) U - I ( s )  of 
the nonimpulsive equation, then the evolution operator of the impulsive 
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equation is (Bainov et at., 1989) 

"G(t, s) Ti < t, s < ri+ 1 

C(t, s) = Zk_ ~ <-- S < rk < re <-- t < te+ l (20) 
k - - 1  

G(t, rl)[jI-I=i Bi lG(r j ,  rj+ l )]Bf f  lG(r S) 

ri_ 1 ~ t <ri  < r k r s < lk+ 1 

Theorem 4.1. Let X = R (scalar case). Suppose there exists a positive 
constant e such that 

for each i , j ,  i , j  = 1, 2 , . . . ,  ( H 1 ) - ( H 3 )  hold, and any solution of  the initial 
problem (4), (5), x(0) = 0, is bounded on [0, oo) for any bounded sequence 

Then there exist positive constants N and v such that the solution U(t) 
of nonimpulsive equation (4), U ( 0 ) =  1, satisfies (10). 

If, in addition, (H5) holds, then for G(t, s) the estimate (15) is valid for 
certain N, v > 0. 

Proof. By Theorem 2.1 the hypotheses of  the theorem imply that there 
exist N1 > 0, v > 0 such that 

IX(t)[-< N1 e x p ( - v t )  

where X(t)  is the solution of  (4), (2), x(0) = 1. In the scalar case (19) can 
be rewritten as 

X(t)  = U(t) 11 B~ (21) 
O < z i ~  f-- 

Therefore 

[U(t)l < IX(t)! < Nl exp(--vt) < N exp(--vt) 

with N = Nl/e.  
Similarly (20) implies the estimate (15) for G(t, s). 

Theorem 4.2. Let the operators Bi and G(t, s) be commuting for each 
t, s > 0, i = 1, 2 , . . . .  Suppose any solution of  the initial problem (1), 
x(0) = 0, is bounded on [0, ~ )  for any bounded on [0, oo) right-hand side 
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f and there exists Q > 0 such that 

J 

I-1 1184 IL-< Q 
k = i  

for each i, j = 1, 2 . . . . .  
Then there exist positive constants N and v such that the solution X of  

the problem (4), (2), X(0) = L has an estimate (t0). 
If, in addition, there exists M > 0 such that 

f '+ ' IIA(s) I1 ds < M, i = 1, 2 

then for C ( t , s ) = X ( t ) X - ~ ( s )  the estimate (15) is valid, with certain 
N , v > O .  

Proof. The hypotheses of the theorem imply (Dalecki~ and Kre~n, 
1974, p. 127) that there exist N~, v > 0 such that 

l[ U(t)[[ < N I exp( - vt) 

Since Bi and U(t) = G(t, 0) are commuting, we obtain (21). Hence 

IlX(t) ]1 -< I] U(t)t1 I-I I1B~ l[ <-- QN1 exp( -v t )  = N exp( -v t )  
O<Ti<<-t 

with N = N~ Q. 
Similarly, by applying (20), one obtains (15), which completes the 

proof of the theorem. 
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